The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Advancements in reinforcement learning (RL) have inspired new directions in intelligent automation of network defense. However, many of these advancements have either outpaced their application to network security or have not considered the challenges associated with implementing them in the real-world. To understand these problems, this work evaluates several RL approaches implemented in the second edition of the CAGE Challenge, a public competition to build an autonomous network defender agent in a high-fidelity network simulator. Our approaches all build on the Proximal Policy Optimization (PPO) family of algorithms, and include hierarchical RL, action masking, custom training, and ensemble RL. We find that the ensemble RL technique performs strongest, outperforming our other models and taking second place in the competition. To understand applicability to real environments we evaluate each method's ability to generalize to unseen networks and against an unknown attack strategy. In unseen environments, all of our approaches perform worse, with degradation varied based on the type of environmental change. Against an unknown attacker strategy, we found that our models had reduced overall performance even though the new strategy was less efficient than the ones our models trained on. Together, these results highlight promising research directions for autonomous network defense in the real world.
translated by 谷歌翻译
当今的混合现实头戴式显示器显示了用户在世界空间中的头部姿势以及用户的手,以在增强现实和虚拟现实场景中进行互动。尽管这足以支持用户输入,但不幸的是,它仅限于用户的虚拟表示形式。因此,当前的系统诉诸于浮动化身,其限制在协作环境中尤为明显。为了估算稀疏输入源的全身姿势,先前的工作已在骨盆或下半身中融合了其他跟踪器和传感器,从而增加了设置的复杂性并限制了移动设置中的实际应用。在本文中,我们提出了AvatarPoser,这是第一个基于学习的方法,该方法仅使用用户头和手中的运动输入来预测世界坐标中的全身姿势。我们的方法建立在变压器编码器上,以从输入信号中提取深度特征,并将全局运动从学到的局部关节取向中解脱出来,以指导姿势估计。为了获得类似于运动捕获动画的准确全身运动,我们使用具有逆运动学的优化程序来完善臂关节位置,以匹配原始跟踪输入。在我们的评估中,AvatarPoser实现了新的最新最新结果,从而对大型运动捕获数据集(Amass)进行了评估。同时,我们的方法的推理速度支持实时操作,提供了一个实用的接口,以支持整体化的头像控制和元应用的表示形式。
translated by 谷歌翻译
尽管机器人可以在大量隔离任务上熟练,但在现实的动态环境中的机器人部署是一个具有挑战性的问题。原因之一是机器人很少配备强大的内省能力,这意味着他们不能总是以合理的方式处理失败。此外,手动诊断通常是一项繁琐的任务,需要技术人员具有相当多的机器人技能。在本文中,我们讨论了我们正在进行的努力 - 在Ropod项目的背景下 - 解决其中一些问题。特别是,我们(i)提出了我们早期开发机器人黑匣子的早期努力,并考虑一些使其设计复杂的因素,(ii)解释我们的组件和系统监控概念,(iii)将远程监控和实验的必要性描述为以及我们最初的执行这些尝试。我们的初步工作打开了一系列有希望的方向,使机器人在实践中更可用和可靠 - 不仅在Ropod的背景下,而且在更一般的意义上也是如此。
translated by 谷歌翻译
自动生物医学图像分析的领域至关重要地取决于算法验证的可靠和有意义的性能指标。但是,当前的度量使用通常是不明智的,并且不能反映基本的域名。在这里,我们提出了一个全面的框架,该框架指导研究人员以问题意识的方式选择绩效指标。具体而言,我们专注于生物医学图像分析问题,这些问题可以解释为图像,对象或像素级别的分类任务。该框架首先编译域兴趣 - 目标结构 - ,数据集和算法与输出问题相关的属性的属性与问题指纹相关,同时还将其映射到适当的问题类别,即图像级分类,语义分段,实例,实例细分或对象检测。然后,它指导用户选择和应用一组适当的验证指标的过程,同时使他们意识到与个人选择相关的潜在陷阱。在本文中,我们描述了指标重新加载推荐框架的当前状态,目的是从图像分析社区获得建设性的反馈。当前版本是在由60多个图像分析专家的国际联盟中开发的,将在社区驱动的优化之后公开作为用户友好的工具包提供。
translated by 谷歌翻译
由于深度学习模型越来越多地用于安全关键应用,可解释性和可信度成为主要问题。对于简单的图像,例如低分辨率面部肖像,最近已经提出了综合视觉反事实解释作为揭示训练分类模型的决策机制的一种方法。在这项工作中,我们解决了为高质量图像和复杂场景产生了反事实解释的问题。利用最近的语义到图像模型,我们提出了一种新的生成反事实解释框架,可以产生卓越的稀疏修改,该框架可以保护整体场景结构。此外,我们介绍了“区域目标反事实解释”的概念和相应的框架,其中用户可以通过指定查询图像的一组语义区域来指导反事实的生成说明必须是关于的。在具有挑战性的数据集中进行了广泛的实验,包括高质量的肖像(Celebamask-HQ)和驾驶场景(BDD100K)。
translated by 谷歌翻译
由于数据隐私问题,人类的医疗数据可能具有挑战性,难以进行某些类型的实验,或禁止的相关成本。在许多设置中,可以获得来自动物模型或体外细胞系的数据,以帮助增加我们对人类数据的理解。然而,与人类数据相比,该数据已知具有低病因有效性。在这项工作中,我们使用体外数据和动物模型增强了小型人类医疗数据集。我们使用不变的风险最小化(IRM)来阐明通过考虑属于不同数据生成环境的交叉器件数据来阐明不变的功能。我们的模型识别与人类癌症发展相关的基因。我们观察到不同于使用的人和小鼠数据的数量之间的一致性,但是需要进一步的工作来获得结论性见解。作为次要贡献,我们增强了现有的开源数据集,并提供了两个均匀加工,交叉生物的同源基因匹配的数据集。
translated by 谷歌翻译
自动抄表技术尚未普遍。燃气,电或水积米读数主要由运营商或房主手动完成。在一些国家,操作员将拍照作为阅读证据,以通过与另一个运营商的离线检查和/或在发生冲突或投诉的情况下作为证据来确认阅读。整个过程是耗时,昂贵的,容易出错。自动化可以优化和促进这种劳动密集型和人类错误的过程。随着近期人工智能和计算机视野领域的进步,自动抄表系统比以往任何时候都变得越来越可行。最近在人工智能领域的近期进步,并受研究界的开源开放访问举措的启发,我们介绍了一个名为NRC-Gamma数据集的现实寿命燃气表图像的新型大型基准数据集。在2020年1月20日,在00:05 AM和11:59 PM之间,从Itron 400A隔膜煤气表收集数据。我们使用系统的方法来标记图像,验证标签,并确保注释的质量。数据集包含整个煤气表的28,883个图像以及左侧和右拨号显示器的57,766次裁剪图像。我们希望NRC-Gamma DataSet有助于研究界设计和实施准确,创新,智能,可重复的自动燃气表阅读解决方案。
translated by 谷歌翻译
尽管近期因因果推断领域的进展,迄今为止没有关于从观察数据的收集治疗效应估算的方法。对临床实践的结果是,当缺乏随机试验的结果时,没有指导在真实情景中似乎有效的指导。本文提出了一种务实的方法,以获得从观察性研究的治疗效果的初步但稳健地估算,为前线临床医生提供对其治疗策略的信心程度。我们的研究设计适用于一个公开问题,估算Covid-19密集护理患者的拳击机动的治疗效果。
translated by 谷歌翻译
尽管自动图像分析的重要性不断增加,但最近的元研究揭示了有关算法验证的主要缺陷。性能指标对于使用的自动算法的有意义,客观和透明的性能评估和验证尤其是关键,但是在使用特定的指标进行给定的图像分析任务时,对实际陷阱的关注相对较少。这些通常与(1)无视固有的度量属性,例如在存在类不平衡或小目标结构的情况下的行为,(2)无视固有的数据集属性,例如测试的非独立性案例和(3)无视指标应反映的实际生物医学领域的兴趣。该动态文档的目的是说明图像分析领域通常应用的性能指标的重要局限性。在这种情况下,它重点介绍了可以用作图像级分类,语义分割,实例分割或对象检测任务的生物医学图像分析问题。当前版本是基于由全球60多家机构的国际图像分析专家进行的关于指标的Delphi流程。
translated by 谷歌翻译